Full 2-Convexity in Bochner $\bf L^p$-Spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Convexity and Fixed Point Properties in Hardy and Lebesgue- Bochner Spaces

We show that for the Hardy class of functions H 1 with domain the ball or polydisc in CN , a certain type of uniform convexity property (the uniform Kadec-Klee-Huff property) holds with respect to the topology of pointwise convergence on the interior; which coincides with both the topology of uniform convergence on compacta and the weak ∗ topology on bounded subsets of H 1. Also, we show that i...

متن کامل

Strong Barrelledness Properties in Lebesgue-Bochner Spaces

If (Ω,Σ, μ) is a finite atomless measure space and X is a normed space, we prove that the space Lp(μ,X), 1 ≤ p ≤ ∞ is a barrelled space of class א0, regardless of the barrelledness of X. That enables us to obtain a localization theorem of certain mappings defined in Lp(μ,X). By “space” we mean a “real or complex Hausdorff locally convex space”. Given a dual pair (E,F ), as usual σ(E,F ) denotes...

متن کامل

Nonsquareness in Musielak-Orlicz-Bochner Function Spaces

and Applied Analysis 3 Proposition 1.2. Function σ t is μ-measurable. Proof. Pick a dense set {ri}i 1 in 0,∞ and set Bk { t ∈ T : M ( t, 1 2 rk ) 1 2 M t, rk } , qk t rkχBk t k ∈ N . 1.7 It is easy to see that for all k ∈ N, σ t ≥ qk t μ-a.e on T . Hence, supk≥1qk t ≤ σ t . For μ-a.e t ∈ T , arbitrarily choose ε ∈ 0, σ t . Then, there exists rk ∈ σ t − ε, σ t such that M t, 1/2 rk 1/2 M t, rk ,...

متن کامل

Totally probabilistic Lp spaces

In this paper, we introduce the notion of probabilistic valued measures as a generalization of non-negative measures and construct the corresponding Lp spaces, for distributions p > "0. It is alsoshown that if the distribution p satises p "1 then, as in the classical case, these spaces are completeprobabilistic normed spaces.

متن کامل

Convexity in Tree Spaces

We study the geometry of metrics and convexity structures on the space of phylogenetic trees, which is here realized as the tropical linear space of all ultrametrics. The CAT(0)-metric of Billera-Holmes-Vogtman arises from the theory of orthant spaces. While its geodesics can be computed by the Owen-Provan algorithm, geodesic triangles are complicated. We show that the dimension of such a trian...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 1991

ISSN: 0035-7596

DOI: 10.1216/rmjm/1181072930